An intertemporal analysis of foreign borrowing for developing economies*

Hyeon–seung Huh
Tadashi Inoue**
Hyun–Hoon Lee

September 2006

* This paper was presented at the Annual Conference of the Asia-Pacific Economic Association, Hitotsubashi University, Japan, July 30-31, 2005. We are grateful to the participants for their useful comments.

** Corresponding author
An intertemporal analysis of foreign borrowing for developing economies

Abstract

Foreign capital flows have become increasingly important in financing investment and growth in developing countries. Foreign capital flows can, however, be volatile as is evident from recent financial crises. This paper analyzes the borrowing behavior of a developing economy that relies on foreign borrowing for its capital formation. In particular, this paper investigates the implications of different lending policies of international financial institutions. When the borrowing interest rate increases with the absolute level of foreign debt, there is high possibility for developing countries to be on the growth path toward the zero consumption. When the borrowing rate depends on foreign-capital/total-capital ratio, however, the economy always moves toward the stationary state irrespective of the level of initial per capita capital, washing away the possibility of the path toward zero consumption. The results imply that the lending policies of the financial institutions in industrial countries need to be modified in such a way that the lending rates increase gradually with the level of foreign debt relative to the size of the borrowing country.

Keywords: Foreign borrowing, Imports of investment good, financial crisis

JEL Classification: C61; F34; F43
1. Introduction

Foreign capital flows have become increasingly important in financing investment and growth in developing countries. The foreign debt problem, however, has continued to pose a threat to the integration and fabric of the international financial system, as foreign capital flows can be volatile as is evident from recent financial crises. At the core of the Asian crisis, for example, were large-scale foreign capital inflows into Asian financial systems that became vulnerable to panic. (Radelet and Sachs, 1998). Questions arise again as to whether those countries have been borrowing too much and whether creditors have overextended themselves. In this context, it is more important than ever to gain insights into the role of lending policies of the financial institutions in industrial countries that may affect the trends and direction of such flows.

Traditionally, foreign borrowing is seen as a source of increased resources for investment in the growth-cum-debt framework. A well-known example is the Harrod-Domar model. However, this approach is not designed to tackle the issue of how much a country should borrow, in that foreign borrowing is modeled to fill the gap between the required level of investment and the level of domestic savings, and also to service outstanding debt. Bardhan (1967), Hamada (1969) and Hanson (1974) are early studies that analyze the optimal level of foreign borrowing by basing the models on the context of intertemporal optimizing principles. Yet, McDonald (1982) observes that the emphasis on growth by investment tends to neglect the role of foreign borrowing in achieving a more efficient intertemporal allocation of consumption. In fact, the recent literature has paid more attention to the use of foreign borrowing for consumption purposes. In a standard setup, foreign borrowing is used mainly to smooth the consumption path over time where consumption and investment decisions are made independently of each other under the assumption of a small open economy facing a given world interest rate.1

The purpose of this paper is to recast the investment role of foreign borrowing in a

1 See Obstfeld and Rogoff (1996: 19) for rationales underpinning the separation of consumption from investment.
modern intertemporal framework. In particular, this paper investigates the implications of different lending policies of international financial institutions. Along this line of inquiry, the present paper develops a dynamic optimizing model of consumption and foreign borrowing for a developing economy that relies on foreign borrowing for its capital formation. The assumption of a constant interest rate restricts the time discount rate to be equal to the interest rate, a rather unrealistic assumption. Several variations have been proposed in the infinite-horizon framework in order to alleviate this constraint. Sen and Turnovsky (1989) introduce adjustment costs of investment to avoid this constraint. Obstfeld (1982) allows a variable rate of time preference by endogenizing it (making a function of the utility level) through the introduction of Uzawa (1968) preferences. Alternatively, the overlapping generations model allows for effects from finite horizons by assuming that people live a fixed number of discrete periods. Blanchard (1985) retains the essence of the finite-horizon idea in a more tractable framework by assuming a finite probability of death. In this stream, the world interest rate and the rate of time preference do not necessarily have to be equal, and the difference between them becomes a function of financial wealth. Barro and Sali-i-Martin (1995: Chapter 3) provides a comprehensive review on these extensions.

A distinctive feature of this paper is to consider the effect of country risk on the interest rate faced by small borrowing economies on world capital markets. Bardhan (1967) was one of the first economists to introduce the assumption that small borrowing countries face a world interest rate that increases with the level of foreign debt. As foreign indebtedness grows, so does the risk of default; to compensate, lenders charge a premium that raise the marginal cost of borrowing over the safe lending rate. The supply curve of funds on world capital markets is therefore upward sloping. Bardhan’s approach has been adopted in numerous studies including papers by Obstfeld (1982), Edwards (1984), Sachs (1984), Bhandari et al. (1990), Senhadji (1997), Fisher (1995), and Agénor (1997).

We first incorporate this idea by assuming that the rate of interest faced by the debtor country rises with the level of foreign debt. The effect of such a constraint on borrowing changes the dynamics in a fundamental way. In particular, the marginal cost of capital facing
the agent, and therefore determining his/her investment decisions, is now dependent on the outstanding stock of debt. The results show that the economy can reach the stationary state when the initial per capita capital is large enough. However, the economy fails to reach this stationary state when the initial per capita capital is low, even if such a stationary state exists, and instead reaches another stationary state with zero consumption. The former stationary state is realized if the productivity is high or the time discount rate is low. When the productivity is low or the time discount rate is high, then the economy reaches the latter stationary state even if the import of foreign investment good is positive.

Next, we introduce an alternative assumption that the interest rate depends not on the absolute level of foreign capital but on foreign-capital/total-capital ratio as done by Chatterjee and Turnovsky(2004, 2005). In this case, the economy always moves toward the stationary state irrespective of the level of initial per capita capital, washing away the possibility of the growth path toward the zero consumption. Hence, this assumption radically changes the previous results.

The results imply that in order to reduce the risk to emerging market countries, the lending policies of the financial institutions in industrial countries need to be modified in such a way that the lending rates increase gradually with the level of foreign debt relative to the size of the borrowing country. This is simple but is not well practiced in reality because of imperfect information (the lack of consistent and reliable macroeconomic data) and/or moral hazard (the encouraging of imprudent or unsustainable behavior by the creditors with the perception that international community will rescue risky investments in the case of financial crisis).

The remainder of this paper is organized as follows. In Section 2, we develop a basic framework of our model, and in Section 3, by introducing an assumption that the borrowing rate increases with the outstanding level of foreign capital in a developing country, we show the existence of the two kinds of stationary states. In Section 4, we introduce an alternative assumption that the interest rate depends on foreign-capital/total-capital ratio, and show the existence of unique stationary state. Section 5 concludes the paper and provides some useful
implications.

2. **Basic Framework of Model**

We consider the standard borrowing problem facing a planning authority of a small open economy, where it is expected to maximize the discounted utility streams of per capita consumption. The economy produces unique homogeneous good which can be either consumed or accumulated as capital stock. This implies that there exists no international trade in good. The country can borrow to import additional capital stock which is identical with the domestic one. It is assumed that foreign borrowing is exclusively utilized to augment domestic capital stock with a variable interest rate which increases with the increase in the foreign capital stock. In short, the home country can import capital \(k_f \) from the foreign country if necessary.

Production of the homogeneous good occurs using capital and labor according to a neoclassical production function exhibiting constant returns to scale. Per capita output is:

\[
q_t = f(k),
\]

where \(k \) is the capital–labor ratio in the production of the composite good. The production function satisfies the following usual assumptions:

\[
\begin{align*}
&f'(k) > 0, \quad f''(k) < 0, \\
&f(0) = 0, \quad f(\infty) = \infty, \\
&f'(0) = \infty, \quad f'(\infty) = 0.
\end{align*}
\]

Resources are fully employed and the labor is fixed at \(L = L_0 \). Of the total amount of capital used in the country, part is domestically owned capital and the rest is foreign capital:

\[
k = k_d + k_f,
\]

where \(k_d \) and \(k_f \) are the domestic capital–labor ratio (domestic capital per worker) and the foreign capital–labor ratio (foreign capital per worker), respectively.

Per capita income in period \(t \), \(y_t \), is given by \(q_t \) net of per capita interest payments on
outstanding foreign debt in the corresponding period:

\[y_t = q_t - rk_f, \]

(3)

where \(r \) denotes the real rate of interest on foreign debt. Per capita domestic investment in period \(t \), \(i_d \), is the difference between per capita income and per capita consumption:

\[y_t - c_t = i_d. \]

(4)

Assuming no capital depreciation, the net change in the level of domestic capital–labor ratio in period \(t \) is new domestic investment per person:

\[\dot{k}_d = i_d = f - rk_f - c. \]

(5)

The felicity function is specified to be

\[u(c) = \frac{1}{1-\sigma}c^{1-\sigma}, \text{ where } 0 < \sigma < 1. \]

(6)

3. The Case of \(r = r(k_f) \) with \(r'(k_f) > 0 \)

Here we assume that the interest rate in the home country rises with the levels of foreign capital per worker:

\[r = r(k_f), \ r' > 0. \]

(7)

Assumed further is that the interest rate changes at an increasing rate so that

\[r''(k_f) > 0. \]

(8)

(1) First we consider the case where the representative consumer takes interest rate \(r \) as given even if it changes according to (7), since as a microeconomic agent he/she thinks interest rate to be determined by markets (macroeconomic environment).

The planning problem faced by a representative agent with an infinite terminal time and positive discount rate is to choose paths for consumption \((c) \) and foreign capital stock \((k_f) \) as control variables and \((k_d) \) as state variable so as to

\[
\text{Max}_{c, k_f} \int_0^\infty e^{-\rho t} u(c) \ dt
\]

(9)
subject to
\[\dot{k}_d = f(k) - c - r k_f. \] (5)

This is solved by taking the current value Hamiltonian
\[H = u(c) + \lambda (f(k) - c - r(k_f) \cdot k_f) \]
and obtaining the first order conditions
\[c^{-\sigma} = \lambda, \] (10)
\[\dot{\lambda} = (\rho - f'(k))\lambda, \] (11)
\[f'(k) = r \] (12)
and the transversality condition (TVC)
\[\lim_{t \to \infty} k_d \lambda e^{-\sigma} = 0. \] (13)

From (12) we observe
\[k = k(k_d) \]
with \(dk / dk_d = 1/(dk_f / dk) = 1/(1 - dk_f / dk) = r'/(r' - f'') \), so that \(0 < dk / dk_d < 1 \) and hence \(dk_f / dk_d < 0 \) and
\[g'(k) = r'(k_f)k_f'k_f + rk_f' < 0 \]
where \(g(k_f(k)) = r(k_f) \cdot k_f \) hold.

From (12), there exists \(k = k_M = k_d \) such that \(f'(k_M) = r(0) \), i.e., the maximum value of \(k \)
where foreign capital \(k_f \) becomes zero. In short, an increase in \(k_d \) decreases the foreign capital \(k_f \) but increases the total capital stock \(k(= k_d + k_f) \).

From (11) and (12), we obtain
\[\dot{c} / c = \sigma^{-1}(f'(k) - \rho). \] (14)
Using (5) with \(\dot{k}_d = 0 \), the \(\dot{k}_d = 0 \) curve is expressed as
\[c = f(k) - g(k_f(k)). \] (15)
Recalling \(g' > 0 \) and \(dk_f/dk < 0 \), we obtain from (15) and Fig. 1 that there exists \(k = k_0 \) such that \(c = 0 \) at \(k = k_0 \) and \(c > 0 \) for \(k > k_0 \) with \(dc/dk > 0 \) for \(k \geq k_0 \). Recalling further that \(k \) depends on \(k_d \), we obtain along the \(\dot{k}_d = 0 \) curve, \(dc/dk_d > 0 \) for \(k_d > k_d \), where \(k = k(k_d) \), i.e. \(k_d \) is the value of \(k_d \) corresponding to \(k = k_0 \), and the \(\dot{k}_d = 0 \) curve is positively sloped as drawn in Fig. 2.

Next, we consider the \(\dot{c} = 0 \) curve. This is obtained from (14), with \(\dot{c} = 0 \), as a vertical line with \(k_d = k_d^* \), where \(f'(k^*) = \rho \) and \(k^* = k(k_d^*) \), i.e. \(k_d^* \) is the value of \(k_d \) such that \(k = k(k_d^*) \) holds and at \(k = k^* \), \(f'(k^*) = \rho \) holds, as drawn in Fig. 2.
First, we consider

Case 1. \(k_d < k_d^* \),

That is, two curves \(\dot{k}_d = 0 \) and \(\dot{c} = 0 \) intersect at \(E(k_d^*, c^*) \). Then we obtain the phase diagram as drawn in Fig. 2 from (14) and (15).

From Fig. 2, it is seen that

(i) if initial per capita domestic capital \(k_{d0} \) is larger than \(k_d \) but less than \(k_d^* \), i.e., \(k_d < k_{d0} < k_d^* \), then the economy is on the growth path with both \(k_d \) and \(c \) increasing toward the equilibrium \(E \).

(ii) if \(k_{d0} \) is larger than \(k_d^* \), i.e., \(k_{d0} < k_d^* \), then again the economy is on the stable path with both \(k_d \) and \(c \) decreasing toward \(E \);

(iii) if initial \(k_d \) is less than \(k_d^* \), then the economy reaches another stationary state where the consumption is zero. That is, as drawn in Fig. 2, \(k_d \) keeps decreasing and \(c \) and \(k_f \) keep increasing, but \(k_d \) becomes zero (i.e., \(k = k_f \)) in a finite time \(t = T < +\infty \), and then \(c \) and \(k_f \) also become zero at \(t = T \). That is, at \(t = T \), all foreign capital stock \(k_f \) is withdrawn from the home country.

Here we note for (iii) the path \((k_d, c) \to (0, \infty)\) as \(t \to +\infty \) (shown by arrowed dotted line \(aB' \)) violates the transversality condition. One transversality condition for this case is that the present value Hamiltonian \(\tilde{H} = e^{-\rho t}H \) vanishes as \(t \to +\infty \).\(^2\) However \(\tilde{H} \) does not vanish if \(k_d \to 0 \), \(c \to +\infty \).\(^3\)

We note that (iii), i.e., the economy moves toward the zero consumption if initial per capita domestic capital \(k_{d0} \) is smaller than \(k_d^* \) even if the stationary state \(E^* \) which

\(^3\) Let \(x = u(c)e^{-\rho t} \), then \(\dot{x} / x = (u / u)\dot{c} - \rho = (1 - \sigma)^{-1}\dot{c} / c - \rho = (1 - \sigma)^{-1}(f^c - \rho) - \rho >> 0 \) as \(k_d \to 0 \). (As seen from \(k = k(k_d) \), \(k \) decreases as \(k_d \to 0 \). Hence we may assume \(\dot{x} / x >> 0 \) as \(k_d \to 0 \).)
would be realized if \(k_{d0} \) were larger than \(k_d \) does exist.

Next, we consider Case 2. \(k_d \geq k_d^* \)

Fig. 3 shows the phase diagram of this case 2.\(^4\)

The only viable path for this case is, as seen from Fig. 3, the arrowed dotted curve starting from A and reaching the vertical axis in a finite time \(t = T < +\infty \) and at \(t = T \), both \(k_d \) and \(c \) become zero. For completeness, we assume that for \(k > k_{M} \), the home country can export capital with rental price \(r(0) \). Then, from \(f'(k_M) = r(0) \) (12), the path starting from \(a \) hits the vertical line \(k_d = k_M \) and reaches \((k_M, 0)\) in a finite time, although this path violates TVC as discussed in footnote 5. Here, we note that such paths as \(ab \) and \(ab' k_M \) also violate the transversality conditions.\(^5\)

This case arises as the \(\dot{c} = 0 \) curve and the \(\dot{k}_d = 0 \) curve does not intersect due to the high value of \(k_{d0} \) or low value of \(k_d^* \). Recalling Fig. 1, this happens when the values of the

\(^4\) For \(k > k_M \), \(k_M \) becomes zero and the \(\dot{k}_d = 0 \) curve is expressed as \(c = f(k_d) \) from (15).

\(^5\) For \(ab \), \(c = c(T) = 0 \) at \(t = T < +\infty \) and \(k = k(T) < \infty \) at \(t = T \). Then \(\dot{\lambda} = u'(c) \rightarrow +\infty \) as \(t \rightarrow T \) and hence \(\lambda(T) \rightarrow 0, T \) violating TVC. (TVC at \(t = T \) is \(H(T) = 0 \). See e.g., Léonard and van Long (1992) Chap. 7.5.) In fact at \(t = T \), \(H(T) \rightarrow 0 \), where \(\dot{k}_d = f(k(T)) - r k_M \). For \(ab' k_M \), \((k_d, c) \rightarrow (k_M, 0) \) as \(t \rightarrow T < +\infty \). In fact, after \((k_d, c) \) reaches \(b' \), it moves toward \((k_M, 0) \) along the vertical line \(b' k_M \). Then again, \(H(T) > 0 \) follows at \((k_M, 0) \), violating TVC.
labor production function \(f(k) \) are relatively low, in short, low labor productivity prevails or time discount rate \(\rho \) is so high that \(k_d^* \) is low. It is interesting to note that Case 2 happens irrespective of the initial value of \(k_d, k_{d0} \).

(2) Next we consider the case where the representative consumer observes the interest rate \(r \) to increase with the increase in foreign capital \(k_f \) as well as \(r''(k_f) > 0 \) (8). Then (12) is rewritten as

\[
 f'(k) = r + r'k_f ,
\]

and (10) through (15) except (12) remain valid. Here \(\frac{dk}{dk_d} = 1/(1 - f''/(r''k_f + 2r')) \) so that \(0 < \frac{dk}{dk_d} < 0 \) remains valid.

Then we obtain the same conclusion for both Case 1. \(k_d < k_d^* \) and Case 2. \(k_d \geq k_d^* \).

Here we note the difference between our model and Bardhan(1967)’s one. While we derive the two stationary states depending on the level of initial domestic capital \(k_{d0} \), Bardhan obtains the unique stationary state and the global stability of the optimal path irrespective of the initial level of domestic capital. These differences in conclusions are caused by the specification of felicity function. That is, in our model felicity function depends only on consumption, while in Bardhan’s model, it depends both on (positively) consumption and (negatively) foreign capital.

3. The Case of \(r = r(k_f/k) \) with \(r' > 0 \).

Here, we make a comparison with some alternative models. Chatterjee and Turnovsky (2004, 2005) make two assumptions in their growth model of small country borrowing from abroad to finance public investment. One is the behavior of the representative consumer. The consumer takes borrowing interest rate \(r \) given, even if it goes up with the aggregate debt/capital ratio, which the individual agent assumes not to be capable of influence. This has been treated in our model also in (1). Second is as already mentioned above, that the
borrowing interest depends not on debt itself but the debt/capital ratio. In our model where
debt equals foreign capital, interest rate depends on foreign capital/total capital ratio, i.e.,
\(k_f/(k_d + k_f) \). ⁶

Next we discuss the assumption of interest-rate dependence on \(k_f/k \), i.e.
\(r = r(k_f/k) \) with \(r' > 0 \) and \(r'' > 0 \). This assumption radically changes the conclusions. Only
one stationary state exists and the economy can attain this irrespective of the level of
initial capital. The same results follow, whether the consumer regards interest rate as given
or controllable.

Here, to obtain definite results, we make the following specifications: (1) The
production function is of Cobb-Douglas, i.e. \(y = f(k) = k^\alpha \) with \(1 > \alpha > 1/2 \) where \(\alpha \) is
the capital share, and (2) \(r(k_f/k) = r_0/(1-k_f/k) \), where \(r_0 \) is the world interest rate level
with no borrowing.

[Fig. 4]

⁶ Edwards(1984) estimates the various variables which affect the level of borrowing interest rate \(r \) for
developing countries and shows that debt/GNP ratio, i.e., \(k_f/\hat{f}(k) \) is the most significant, although he
does not estimates debt/capital ratio.

Eaton and Gersovitz(1989) provide a logical foundation for the borrowing interest rate \(r \) to depend on
debt/capital ratio.
The shape of the function r is drawn in Fig. 4. This implies that as k_f / k approaches 1, the borrowing interest rate goes up to infinity. Under these specifications in the following we show that the economy approaches the equilibrium E irrespective of the initial level of per capita capital k_0 as shown in Fig. 7 below.

The results crucially depend on the shape of the function $g(k) = r(k_f / k) \cdot k_f$ with $k_f = k_f(k)$.

(1) First, we consider the case where the consumer takes r to be given, i.e., the case of (12),

$$f'(k) = r(k_f / k),$$

which is equal to $\alpha k^{\alpha - 1} = r_0 / (1 - k_f / k)$.

From this we obtain

$$k_f = (\alpha k^\alpha - r_0 k) / \alpha k^{\alpha - 1} = k - (r_0 / \alpha) k^{2 - \alpha},$$

$$dk_f / dk = k_f' = 1 - (2 - \alpha) r_0 \alpha^{-1} k^{1 - \alpha},$$

implying

$$k_f' > 0 \iff k < \left(\frac{\alpha}{(2 - \alpha) r_0} \right)^{1/(1 - \alpha)}.$$

Then from (16) and $k_d = k - k_f = (r_0 / \alpha) k^{2 - \alpha}$ we obtain

$$dk_d / dk = k_d' = \frac{(2 - \alpha) r_0}{\alpha} k^{1 - \alpha} > 0.$$

Similarly by calculation we observe from (16)

$$g(k) = \alpha k^\alpha - r_0 k.$$

Hence

$$g'(k) > 0 \iff \alpha^2 k^{\alpha - 1} - r_0 > 0 \iff \left(\frac{\alpha^2}{r_0} \right)^{1/(1 - \alpha)} > k > 0.$$
From (16) and (17) we can draw $k_f(k)$ as a function of k as shown in Fig. 5.

$g(k), f(k)$
Furthermore recalling $g'(k) < rk_f/k \leq r$ we can show $g(k)$ from (15) as shown in Fig. 6. Then from $\dot{k}_d = f(k) - g(k) - c = 0$ and $k_d = k_d(k)$, the $\dot{k} = 0$ curve is drawn in Fig. 7 from Fig. 6.

By adding the $\dot{c} = 0$ vertical line in Fig. 7, we observe that there exists a globally stable saddle point path toward the equilibrium point E with $c = c(k)$, irrespective of the level of initial per capita capital k_0.

(2) Next, we consider the case where r is not taken as given but as dependent on k_f/k by the consumer.

Then, $(12)'$ is changed into

$$f'(k) = r + r'(k_f/k) \cdot k_d/k.$$ \hfill (12)"

Recalling $f'(k) = \alpha k^{\alpha-1}$, $r'(x) = r/(1-x)$ and $k_d/k = 1 - x$, where $x = k_f/k$, we can rewrite the above as

$$\alpha k^{\alpha-1} = r \cdot (1 + k_f/k) = r_0 \cdot (1 + k_f/k)/(1 - k_f/k),$$

from which we obtain
\[k_f = (\alpha k^a - r_0 k)/(r_0 + \alpha k^{a-1}). \]
(20)

Then, from \(g = r \cdot k_f = \alpha k^{a-1}(1 + k_f/k)^{-1} k_f \) and (20) we obtain

\[g(k) = (\alpha k^a - r_0 k)/2. \]
(21)

Then, it follows that

\[g'(k) = (\alpha^2 k^{a-1} r_0)/2 < \alpha k^{a-1} = f'(k) \]

and hence we obtain similar growth of \(f(k) \) and \(g(k) \) to that shown in Fig. 6.

Next, from (20) we derive

\[k_d = k - k_f = 2r_0 k/(r_0 + \alpha k^{a-1}), \]
(22)

from which we obtain

\[dk_d/dk = k_d' = 2r_0(2 - \alpha) k^{a-1}/(r_0 + \alpha k^{a-1})^2 > 0. \]

Then we observe a similar phase diagram to Fig. 7 and hence the same conclusion as to the global stability of the path \(c = c(k) \) with \(c'(k) > 0 \).

This conclusion holds whether the representative consumer takes the interest rate as given or recognizes it as controllable, i.e., knows that it depends on foreign capital/total capital ratio, and chooses the optimal level of foreign capital.

The crucial factor for this result is the assumption that borrowing interest rate \(r \) increases as the increase in \(k_f/k \), i.e. foreign capital/total capital ratio. Under this specification, domestic capital moves in the same direction as the total capital, but the foreign capital does not always do so. To be more precise, when the initial domestic capital is low, so is the foreign capital, and as the domestic capital increases, so does the foreign capital, while leaving both consumption and investment positive. However as the domestic capital exceeds a certain level, then the foreign capital starts decreasing with the total capital and consumption still increasing, and the economy approaches the stationary state. When the initial level of domestic capital is high, the domestic capital keeps decreasing while the foreign capital increases. The total capital stock and consumption keep decreasing and the
economy moves toward the stationary state. In our first model, foreign capital always moves in the opposite direction to both the domestic capital and total capital, which causes the interest payment $g(k)$ to decrease as total capital k increases, and hence causes the path toward the zero consumption.

However, in the second model where the interest rate depends on foreign-capital/total-capital ratio, $g(k)$ increases as k increases but, after a certain level of k, it decreases as k increases further as shown in Fig. 6. This negates the possibility of the path toward zero consumption and instead causes the global stability of the economy toward the stationary state with positive consumption.

Here we note the difference between our model and Chatterjee and Turnovsky (2004, 2005)’s model. Although we also treat the case where r depends on debt/capital ratio, they further assume the investment adjustment costs and the existence of both private capital and public capital. As a result of these more general setting, their analysis has to be confined to be local, but the dynamic effects of foreign aid are investigated. In comparison with their setting, ours is much simpler, but the global characteristics of the dynamic path of consumption and domestic capital as well as its global stability are investigated.

5. Concluding Remarks

In a dynamic optimizing model of consumption and foreign borrowing for a developing economy that relies on foreign borrowing for its capital formation, this paper has investigated how different lending policies of international financial institutions have different implications for economic growth of developing countries.

When the borrowing rate is a function of the absolute level of foreign debt, there is high possibility for developing countries to be on the path toward zero consumption. When the borrowing rate depends on foreign-capital/total-capital ratio, however, the economy always moves toward the stationary state of positive consumption irrespective of the level of initial per capita capital, washing away the possibility of the path toward zero consumption.

The results imply that the lending policies of the financial institutions in industrial
countries need to be modified in such a way that the lending rates increase gradually with the level of foreign debt relative to the size of the borrowing country. This is simple but in practice not easy to be implemented because of imperfect information and/or moral hazard.

Inaccurate information or lack of consistent and reliable macroeconomic data leads to wrong decision making on the part of investors. Therefore, the international community such as the IMF needs to help and encourage the sovereign debtor countries to provide credible information so as to help enhance the decision making process of investors. For the investor community, strengthening its ability to assess and manage risks can contribute the stability of international financial flows and help prevent the developing countries from falling into the path toward zero consumption (and hence financial crises). It is also important for the investors to limit moral hazard (the encouraging of imprudent or unsustainable behavior by the creditors with the perception that international community will rescue risky investments in the case of financial crisis). In this regard, the IMF’s recent effort to involve the private creditors in forestalling and resolving financial crises is very appropriate because it can not only limit a “rush for the exits” by private investors during a crisis but more importantly moral hazard before a crisis occurs.

REFERENCES

Bhandari, Jagdeep, Nadeem Haque, and Stephen Turnovsky (1990), Growth, external debt, and sovereign risk in a small open economy, IMF Staff Papers 37, 388–417.

McDonald, Donough (1982), Debt capacity and developing country borrowing: A survey of the literature, *IMF Staff papers* 29, 603-646.

Obstfeld, Maurice (1982), Aggregate spending and the terms of trade: Is there a Laursen-
Samuelson, Paul (1965), A catenary turnpike theorem involving consumption and the golden rule, American Economic Review 55, 486–496.
Senhadji, Abdelhak (1997), Sources of debt accumulation in a small open economy, International Monetary Fund Working Paper No. 146.
Uzawa, Hirofumi (1968), Time preference, the consumption function, and optimum asset holdings, in J. Wolfe (ed.), Value, capital and Growth: Papers in honor of Sir John Hicks, Chicago, Aldine, 485–504.